深度混合多元時間序列異常檢測方法
首發時間:2021-09-06
摘要:時間序列異常檢測是時間序列數據挖掘中的研究熱點問題,在網絡安全、健康醫療、風險管理等實際應用領域占據重要地位。異常檢測任務中的時間序列往往是多元高維數據且異常樣本分布占比較低,基于統計或傳統機器學習的方法缺乏對類不平衡問題的考慮,以及數據間順序關系、局部特征的有效處理,導致誤判或漏判異?,F象的發生。本文提出一種采用深度自編碼器(Deep AutoEncoder, DAE)與傳統分類器(如支持向量機等)相結合的方式進行時間序列異常檢測的方法。深度自編碼器由卷積神經網絡(Convolutional Neural Network, CNN)和長短期記憶(Long Short-Term Memory, LSTM)網絡搭建,得益于CNN和LSTM能有效捕捉時間序列的局部空間特征和數據之間的相關性,原始數據在隱層子空間中的特征表示明顯減弱了正常樣本和異常樣本之間的關系,在此基礎上傳統分類器更容易精準區分出異常,同時降低閾值篩選等檢測方案面臨的不確定性問題。通過與多個基準方法的對比實驗表明,本文提出的算法在多個數據集上都表現出良好的效果。
For information in English, please click here
Deep Hybrid Multivariate Time Series Anomaly Detection
Abstract:Time series anomaly detection is a hot-topic in time series data mining, and it occupies an important position in practical applications, such as network security, health care, and risk management. The time series in anomaly detection tasks are often multivariate high-dimensional data, and the number of anomalous samples is relatively less. Methods based on statistics and traditional machine learning cannot effectively deal with the problem of class imbalances, and they ignore the order of the data and local information, leading to misjudgment and omission of anomaly. This paper proposes a method for time series anomaly detection using a combination of Deep AutoEncoder (DAE) and traditional classifiers (such as support vector machines). The DAE is built by Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM).Thanks to the ability of CNN and LSTM to effectively capture the local spatial and temporal features,the correlation of the original data in the hidden layer subspace has significantly weakened the relationship between normal samples and abnormal samples. On this basis, traditional classifiers are easier to accurately distinguish abnormalities, and decrease the uncertain of detection schemes such as threshold screening. Experiments show that compared with various baselines, the proposed method shows better results on multiple datasets.
Keywords: Time Series Anomaly Detection LSTM CNN AotuEncoder
基金:
引用
No.****
動態公開評議
共計0人參與
勘誤表
深度混合多元時間序列異常檢測方法
評論
全部評論